
Linux Kernel Memory Protection (ARM)

Manjeet Singh, Vaneet

Birla Institute of Technology and Science
University in Pilani, Rajasthan, India

Abstract— Memory protection is a way to control memory
access rights on an embedded system. The main purpose of
memory protection is to prevent a task from accessing
memory without proper access permissions. Without memory
Protection memory segment like code and data segment are
vulnerable to memory related bugs and code injection attacks.
Memory related bugs arise due to corruption from one task to
another that grow in complexity over time until it crashes the
entire system. Such corruptions are hard to debug.
Furthermore code injection attacks continue to be one of the
major ways of computer break-ins and malware propagation
by injecting malicious code. For example: a. Kernel code
section has been corrupted by some task and later the same
section accessed by another task resulting in system crash or
system may display some undesired behaviour. In
aforementioned scenario it’s very difficult to catch the culprit
task. B. a hacker can inject malicious code into a running
process having modified the text section and transfer
execution to the injected code resulting in system’s wreckage.

Keywords— Memory, Kernel, uImage, sections

Introduction

Memory protection is required to intercept corruption at
earlier stage which would be helpful in debugging and also
for security reasons for not allowing malicious code to get
executed.
Memory protection can be provided if system forbids code
section and read only data to get written at run time along
with barred execution from data section. Above mentioned
requirement can be summarized as:

• Kernel code section should always be executable
and read only.

• Kernel read only data (RO) should be read only and
not executable (NE).

• Kernel data should always be not executable (NE)
but should have read write access (RW).

To achieve above requirements is also the main purpose of
this document.

I. HOW IT WORKS

In this paper, a mechanism is explained how to provide
kernel code and data protection. To test this feature a kernel
code is written which tries to modify the behaviour by
changing the function (created by module) address. Fig.1.
displays an example when a code section corrupted by a
task which latterly accessed by another task resulted in
crash.

A. Protection on Kernel module function

Fig.1. Prototype code (existing scenario)

Before producing this scenario (memory protected), the

kernel sections are protected by applying permission over
them. Since kernel divides physical memory into pages and
sections. Sections are updated with permissions like kernel
text will be made as RX, kernel data and stack will be made
as RW. The trade-off is that each region is padded into
section-size (1MiB) boundaries.

Fig.2.kernel module function protection

B. Protection on Kernel own function

Here kernel functions are used to check sections
protections.

Fig.3. Existing scenario

Manjeet Singh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5869-5871

www.ijcsit.com 5869

Fig.4. kernel function protection

II. IMPLEMENTATION

ARMV7 supports variants of memory system
architectures.

• ARMV7, a profile requires inclusion of Virtual
Memory System Architecture (VMSA). This profile
uses MMU for memory translation and protection.

• ARMV7, R profile requires inclusion of Protected
Memory System Architecture (PMSA). This is for
real time system that does not include MMU but
provides memory protection using MPU.

Aforementioned memory system architectures provide

mechanisms to split memory into different regions. Each
region can be configured with specific memory types and
attributes.

Linux kernel requires MMU for virtual address translation.
VMSA (ARMv7-A) will be considered for memory
protection in kernel. In VMSA MMU controls address
translation, access permissions, and memory attribute
determination and checking for memory.

For instruction and data access, the possible settings are:

• No access
• Read-only
• Write-only
• Read/Write

For instruction accesses, additional controls determine
whether instructions can be fetched and executed from the
memory region. If a processor attempts an access that is not
permitted, a memory fault is signalled to the processor.

A. Address Translation

From virtual to physical address translation, MMU
performs Translation table walks. First level table holds
descriptor containing the base address and translation
properties for a section. In case of pages it contains a
pointer to a second level table.

Second level table holds descriptor containing the base
address and translation properties for small or large pages.

Memory protection can be done by controlling access
permission and execute permission of a memory.

A.1 AP, Access permissions

To control Read/Write access to any memory, AP bits
needs to be controlled. For sections AP bits are present in

first level descriptor and for pages AP are available in
second level descriptor.

Fig.5. First level Descriptor

A.2 XN, Execute-Never

When the XN bit is 1, a Permission fault is generated if
processor attempts to execute an instruction fetched from
the corresponding memory region.

Fig.6. Second level Descriptor

B. How to protect Linux kernel code/data

The focus of this paper is to protect below three
categories of kernel code.

B.1 Kernel static code and data (which is loaded as a part
of uImage)

uImage are loaded in the form of sections and kernel
modules are loaded as pages on arm. As explained above, to
protect uImage we need to protect sections by configuring
AP and NE bits of the first level descriptor. Kernel memory
is divided into sections. [Text+RO data], [data section].
Both text [executable] and RO [not executable] section has
different permission so it is required to preserve both
indifferent sections. This may result in some memory
wastage.

After applying protections and modifying section alignment
to kernel sections.

Since kernel sections are aligned by 1MB boundary.

Minimizing size may lead to tlb performance issues. So it’s
not recommended. Above figure is observed after aligning
sections to 1MB boundary.

Memory Protection: - Section Alignment to 1MB
.text: 0xc0008000 – 0xc05c6dfc (5884 kB)
.init: 0xc0600000 – 0xc0633040 (205 kB)
.data: 0xc0634000 – 0xc0669a60 (215 kB)
.bss: 0xc0669a60 – 0xc078abd0 (1157 kB)

***Without memory protection: - Section alignment by
PAGE_SIZE***
.text: 0xc0008000 – 0xc0518ddc (5188 kB)
.init: 0xc0519000 – 0xc0550040 (221 kB)
.data: 0xc0552000 – 0xc058a7a0 (226 kB)
.bss: 0xc058a7a0 – 0xc06fca70 (1481 kB)

Manjeet Singh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5869-5871

www.ijcsit.com 5870

B.2 Dynamic kernel modules

Loadable modules are loaded in the form of pages. To
protect them we need to configure AP and NE bits of
second level descriptor.

B.3 Init data in case of both static and dynamic code/data

There are certain set of data which are initialized once
and then always treated as RO. We cannot protect such data
from corruption as these are not in RO section. To protect
such data we can declare them as constants so that loader
can load them into RO section. Before initializing we need
to disable the protection and after initialization we can
enable it back.

III. CONCLUSION

As displayed above, having configured page table entries
memory protection can be provided.

ACKNOWLEDGMENT

We take this opportunity to thanks and regards to our
mentor Rakesh Kumar (Asst. Professor at BITS Pilani) for
his exemplary guidance, monitoring and constant
encouragement throughout this activity.

REFERENCES
[1] http://lwn.net/Articles/531148/
[2] http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi04

06b/index.html
[3] http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi03

60f/CACHFICI.html
[4] http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi02

11k/Caceaije.html

Manjeet Singh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5869-5871

www.ijcsit.com 5871

